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We present a method for determination of the random-orientation polarimetric scattering properties of an ar-
bitrary, nonsymmetric cluster of spheres. The method is based on calculation of the cluster T matrix, from
which the orientation-averaged scattering matrix and total cross sections can be analytically obtained. An
efficient numerical method is developed for the T-matrix calculation, which is faster and requires less com-
puter memory than the alternative approach based on matrix inversion. The method also allows calculation
of the random-orientation scattering properties of a cluster in a fraction of the time required for numerical
quadrature. Numerical results for the random-orientation scattering matrix are presented for sphere en-
sembles in the form of densely packed clusters and linear chains. © 1996 Optical Society of America.
1. INTRODUCTION
An understanding of the radiative properties of small par-
ticles is relevant to a wide variety of applications, which
include optical diagnostics for industrial aerosol processes
and combustion, environmental issues (e.g., visibility and
haze problems), remote atmospheric sensing (lidar), and
astronomical issues such as the effect of interstellar dust
on propagation of stellar radiation. More often than not,
particles that are formed in natural or technological pro-
cesses will possess complicated morphologies. Fre-
quently, however, the morphological complexity of small
particles arises from aggregation of individual particles
that, by themselves, possess a simple shape. Soot par-
ticles, for example, are commonly in the form of aggre-
gates of small spherical monomers. Scavenging of soot
by water or sulfate droplets results in a compound par-
ticle that, again, consists of several spherical subunits.
Pigment particles that are produced in aerosol reactors
(such as TiO2), are, again, commonly in the form of clus-
ters of nearly spherical individual particles.
As a whole, a cluster of small particles is profoundly

nonspherical in shape, and because of this the usual light-
scattering formulas based on regular particles (such as
spheres) cannot, with reasonable accuracy, be directly ap-
plied to aggregated particles. However, if the individual
particles making up the aggregate possess shapes that
admit analytical solutions to the wave equations, it is pos-
sible to calculate exactly, by appropriate superposition
techniques, the radiative properties of the aggregate.
This approach has been well established for clusters of

spheres—for both cases of internal aggregation (spheres
within spheres) and external spheres.1–6 Even though
the solution is analytical, application of the solution to
large-scale clusters (in both the sizes and the numbers of
spheres) is ultimately limited by numerical issues. The
0740-3232/96/1102266-13$10.00
exact formulation leads to a system of linear equations for
the multipole expansion coefficient that describe the scat-
tered field from each sphere in the cluster. Large-scale
clusters can easily result in systems containing of the or-
der of 103 unknowns—for which direct solution tech-
niques (i.e., matrix inversion) become intractable. Be-
cause of this, solution of the equations for the multipole
coefficients is almost always accomplished with iterative
methods.6–8 A drawback of this approach is that it yields
only the coefficients—and the resulting scattering and ab-
sorption properties of the cluster—for a particular fixed
orientation and polarization of the incident field. Fre-
quently, the random-orientation properties of a cluster
are of primary interest, and to obtain these from an itera-
tive solution scheme obviously requires numerical
quadrature of the fixed-orientation results over a range of
incident directions. Recent investigations of the polari-
metric scattering properties of sphere clusters have
shown that the depolarized scattering components can be
highly sensitive to the orientation of the cluster with re-
spect to the incident field.9,10 Because of this, the accu-
rate numerical calculation of polarimetric scattering
properties of a cluster can require an extremely fine
quadrature scheme.
The purpose of this paper is to describe an efficient

computational scheme to calculate analytically the fixed
and averaged scattering properties of a cluster of spheres.
Our approach is to exploit the properties of a T-matrix de-
scription of scattering from the cluster—from which the
random-orientation cross sections and scattering matrix
can be obtained analytically. We have recently used this
approach to examine the orientation-averaged scattering
matrix of the axisymmetric bisphere cluster;10 here we in-
tend to generalize the formulation to arbitrary clusters.
We begin by reviewing the transformation of the
© 1996 Optical Society of America
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superimposed-field (or sphere-centered) representation of
scattering from the cluster into a single T-matrix descrip-
tion and present the mathematical procedure for extract-
ing the random-orientation scattering matrix elements.
Next, we address the numerical issues regarding the cal-
culation of the T matrix for an arbitrary cluster and offer
a computational strategy that minimizes both memory
and time requirements. We end by presenting calcula-
tion results for chains of spheres and packed sphere clus-
ters and discuss some of the salient aspects of the effects
of multiple scattering and cluster symmetry on the scat-
tering matrix elements.

2. FORMULATION
A. Cluster T Matrix
The procedure for analytically calculating the T matrix
for a cluster of spheres has been described in detail in
Mackowski;11 only an outline of the formulation will be
presented here. As mentioned in Section 1, the approach
involves a superposition solution to Maxwell’s equations
for the multiple spherical boundary domain. The scat-
tered field from the cluster as a whole is resolved into par-
tial fields scattered from each of the NS spheres in the
cluster, i.e.,

Es 5 (
i51

NS

Ei,s , (1)

where each partial field Ei,s is represented by an expan-
sion of vector spherical harmonics that are written about
the origin of the ith sphere:

Es,i 5 (
n51

`

(
m52n

n

(
p51

2

amnp
i hmnp~ri!. (2)

In the above equation h denotes the outgoing-wave vector
spherical harmonic of order n and degree m, and ai are
the corresponding scattered-field expansion coefficients
for sphere i. The extra index p denotes mode, in which
p 5 1 and 2 refer to the TM and TE modes of the scat-
tered field, respectively.
The field arriving at the surface of the ith sphere will

consist of the incident field plus scattered fields that origi-
nate from all other spheres in the cluster. By use of the
addition theorem for vector harmonics these interacting
scattered fields can be transformed into expansions about
the origin of sphere i, which makes possible an analytic
formulation of the boundary conditions at the surface.
After truncation of the expansions to n 5 NO,i orders one
eventually arrives at a system of equations for the scat-
tering coefficients, which take the form

amnp
i 1 ānp

i (
j51
jÞi

NS

(
l51

NO,i

(
k52l

l

(
q 5 1

2

H mnp klq
ij aklq

j 5 ānp
i pmnp

i .

(3)

In the above equation H ij denotes a matrix formed from
the vector harmonic addition coefficients (based on the
spherical Hankel functions) and depends solely on the
distance and the direction of translation from origins j to
i, ā i are the Lorenz/Mie multipole scattering coefficients
for sphere i, which depend on the size parameter xi
( 5 kai 5 2pai /l) and the refractive index mi 5 n
1 ik of sphere i, and pi denote the expansion coefficients
for the plane, linearly polarized incident wave at the ori-
gin of i. Calculation of the addition coefficients is dis-
cussed in Appendix A.
Formal inversion of the system of equations in Eq. (3)

identifies the sphere-centered T matrix of the cluster:

amnp
i 5 (

j51

NS

(
l51

NO,i

(
k52l

l

(
q51

2

Tmnp klq
ij p klq

j . (4)

The Tij matrix is of limited use in describing the scat-
tered field from the cluster [through Eqs. (1) and (2)] be-
cause it is based upon the multiple sphere origins of the
cluster. Total cross sections in both fixed and random
orientation can be obtained from relatively simple opera-
tions directly on Tij,11 yet to describe the differential scat-
tering cross sections (i.e., the scattering matrix), it is ad-
vantageous to transform the sphere-centered Tij matrix
into an equivalent cluster-centered T matrix that is based
upon a single origin of the cluster. This transformation
is of the form

Tnl 5 (
i51

NS

(
j51

NS

(
n851

NO,i

(
l851

NO,i

Jnn8
0i Tn8l8

ij J l8l
j0 . (5)

The J0i and J j0 matrices are formed from the addition co-
efficients based on the spherical Bessel function, and the
subscripts n and l (and their primes) are shorthand for
order, degree, and mode.
The T matrix given in the above equation is completely

equivalent to those calculated with extended boundary-
condition methods.12,13 In particular, the orientation-
averaged scattering matrix elements can be analytically
obtained from the T matrix, following the procedures de-
veloped by Mishchenko14 for axisymmetric scatterers and
by Khlebtsov15 for general scatterers. Because the no-
menclature and the normalization are somewhat different
here from those appearing in these previous works, we
will describe in more detail the formulation of the fixed-
and random-orientation scattering matrix elements.

B. Amplitude Matrix Elements
At large distances from the cluster the scattered field be-
comes a spherical transverse wave. Using the asymp-
totic limit of the Hankel function, we can express the com-
ponents of the wave by16

Eus 5
i
kr

exp~ikr !(
n51

NO

(
m52n

n

(
p51

2

3 ~2i !n11amnptmnp~u!exp~imf!, (6)

Efs 5 2
1
kr

exp~ikr !(
n51

NO

(
m52n

n

(
p51

2

3 ~2i !n11amnptmn32p~u!exp~imf!. (7)

In the above equations amnp are the scattering coeffi-
cients that define the entire scattered field from the clus-
ter, and NO is the maximum retained order in the cluster
T matrix (which will be discussed below). The scattering
coefficients are obtained from the cluster T matrix
through
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amnp 5 (
l51

NO

(
k52l

l

(
q51

2

Tmnpklqpklq , (8)

where pklq represent the expansion coefficients for the in-
cident wave defined at the cluster origin. The scattering
functions tmnp are defined by

tmn1~u! 5
d
du

Pn
m~cos u!, (9)

tmn2~u! 5
m

sin u
Pn
m~cos u!. (10)

Equations (6) and (7) are not especially useful in de-
scribing the scattered field because the polar coordinates
u and f are defined with respect to the cluster axes and
not with respect to the direction and the polarization of
the incident wave. This problem is rectified by rotating
the scattered field to coincide with the incident field.14,17

The incident field can be defined according to a Cartesian
frame x8, y8, z8 so that z8 is the direction of propagation
and F is the angle between the electric-field vector and
the x8 axis. Since this incident frame can be specified by
rotating the cluster frame through appropriate Euler
angles a, b, and g, an identical rotation on the scattering
functions will redefine the scattered field with respect to
the incident field. The rotation transformation can be
expressed18 as

tmnp~u!exp~imf! 5 exp~ima! (
k52n

n

D kn
m ~b!

3 exp~ikg!tknp~u8!exp~ikf8!,

(11)

where the rotation functions D are equivalent (to a nor-
malizing factor) to the generalized spherical functions.14

Formulas for these functions appear in Appendix A. The
polar angles u 8 and f8 are now fixed with respect to the
incident field; u8 5 0 is the forward-scattering direction,
and f8 5 F is the direction of the incident electric-field
vector. By application of Eq. (11) to Eqs. (6) and (7), the
scattering coefficients can be transformed so that u 8 and
f8 take the place of u and f. This transformation is

amnp8 5 exp~img! (
k52n

n

D mn
k ~b!exp~ika!aknp . (12)

Since a, b, and g represent the rotation of the cluster
coordinate system to the incident-field system, then 2g,
2b, and 2a will rotate the incident field to the cluster co-
ordinates. Consequently, the incident-field expansion co-
efficients can be described by

pmnp~a, b, g! 5 exp~2ima! (
k52n

n

D mn
k ~2b!

3 exp@2ik~g 1 F!# pknp8 ~0, 0, 0!,

(13)

where p8 refers to the expansion coefficients for the plane,
linearly polarized wave in the incident-field frame.
Specifically,
p1n18 5
in11

2
2n 1 1
n~n 1 1 !

, p21n18 5 2
in11

2
~2n 1 1 !,

p1n28 5 p1n18 , p21n28 5 2p21n18 ,

pmnp8 5 qmnp8 5 0, umu Þ 1. (14)

With the use of

D mn
k ~2b! 5 ~21 !k1mD2kn

2m ~b! (15)

the T-matrix equation for the scattering coefficients be-
comes

amnp8 5 ~21 !k1s exp@i~m 2 k !g#exp@i~t 2 s !a#

3 D mn
t ~b!TtnpslqD 2kl

2s ~b!exp~2ikF!pklq8 .

(16)

Above and in what follows we adopt a tensorial conven-
tion; summation over all indices not appearing on the left-
hand side of the equation is implied.
To identify the elements of the amplitude scattering

matrix, first we arbitrarily define the scattering plane by
f8 5 0 (i.e., the z8–x8 plane). Components of the scat-
tered electric field that are polarized parallel and perpen-
dicular to this plane are given simply by E is 5 Eu8s and
E's 5 Ef8s . Likewise, incident radiation polarized ei-
ther parallel or perpendicular to the plane is defined by
setting F in Eq. (16) to 0 or p/2, respectively. The four
elements of the amplitude scattering matrix can then be
expressed as

S1 5 tmn32p~u8!~2i !namnp82 , (17)

S2 5 tmnp~u8!~2i !n11amnp81 , (18)

S3 5 tmnp~u8!~2i !n11amnp82 , (19)

S4 5 tmn32p~u8!~2i !namnp81 , (20)

where the superscript 1 or 2 on amnp8 denotes the scatter-
ing coefficients calculated for parallel or perpendicular in-
cident polarization, respectively.

C. Random-Orientation Scattering Matrix
For a fixed orientation of the cluster with respect to the
incident beam the most direct method for calculating the
scattering matrix is first to calculate the scattering am-
plitude elements in Eqs. (17)–(20) and then apply the for-
mulas for the scattering matrix elements in terms of prod-
ucts of the amplitude elements.16 To calculate
analytically the orientation-averaged scattering matrix,
on the other hand, one must first form the products of the
scattering amplitude elements and then integrate the
products over all directions and polarizations of the inci-
dent field. Referring to Eq. (16), the T-matrix represen-
tation of amnp8 contains the product of two rotation
functions—and the products of the amplitude elements
will correspondingly contain products of four rotation
functions. Integration over all incident directions thus
requires a linearization of the D product in Eq. (16).
Borrowing from relationships developed for the coupling
of angular momentum in quantum mechanics,18 we can
expand the product into
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D mn
t ~b!D2kl

2s ~b! 5 (
w5un2lu

n1l

~21 !n1l1w

3 Ĉtn,2sl
w Ĉ2mn,kl

w
D m2kw

t2s ~b!.

(21)

The Ĉ coefficients are equivalent (to a normalizing factor)
to the vector-coupling coefficients; definitions and recur-
rence relations are given in Appendix A.
By use of the orthogonality properties of the rotation

functions, i.e.,

1

8p2 E
0

2pE
0

2pE
0

p

exp@i~u 2 u8!g#

3 exp@i~v 2 v8!a#D uw
v ~b!D u8w8

v8 ~b!sin bdbdadg

5
1

2w 1 1
fvw
fuw

duu8dvv8dww8 , (22)

where

fvw 5
~w 1 v !!
~w 2 v !!

, (23)

the orientation-averaged products of the scattering coeffi-
cients can be given as

in82n~^au1knp81 au81k8n8p8
81* & 1 ^au1knp82 au81k8n8p8

82* &!

5 2Dknpkn8p8
u duu8dkk8 , (24)

in82n~^au1knp81 au81k8n8p8
81* & 2 ^au1knp82 au81k8n8p8

82* &!

5 2Dknp2kn8p8
u duu8dk2k8 , (25)

in82n^au1knp82 au81k8n8p8
81* & 5 i2kDknpk8n8p8

u duu8 . (26)

The matrix D is obtained from the following operations;

Dknpk8n8p8
u

5 (
w5un2n8u

n1n8 1
2w 1 1

3 (
v52w

w

fvwf2uw Bknp
uvwBk8n8p8

uvw* , (27)

Bknp
uvw 5 (

l5L1

L2

~21 !n1lAkl np
vw Ĉ2u2kn,kl

w , (28)

Akl np
vw 5 i2n (

t5T1

T2

(
q51

2

~21 !tĈtn,v2tl
w Ttnpt2vlqpklq8 .

(29)

The limits on l and t in the above equations are defined as

L1 5 max~1, uw 2 nu!, L2 5 min~NO , w 1 n !,

T1 5 max~2n, 2l 1 v !, T2 5 min~n, l 1 v !.
(30)

In addition, the indices k and k8 in the above equations
are limited to the values of 21 and 1.
Referring again to Eqs. (17)–(20), the angular depen-

dence of the scattering matrix elements would be con-
tained in products of the tmnp(u 8) scattering functions.
When we use the same techniques discussed above, these
products can be linearized into a single expansion of
D mn

m8(u8) rotation functions, which provides a compact
and computationally efficient representation of the scat-
tering matrix.14,17 To develop this expansion, we first
note that the t and D functions are related by

tmnp 5 2
1
2

@n~n 1 1 !D 1n
m 1 ~21 !pD 21n

m #. (31)

With the use of Eq. (21), along with the definitions of the
scattering matrix16 and a considerable amount of algebra,
the scattering matrix elements can be given by

S11 5 ReF (
w50

2NO

~a0,1,w 1 a0,21,w!D 0w
0 ~u8!G , (32)

S14 5 ReF (
w50

2NO

~a0,1,w 2 a0,21,w!D 0w
0 ~u8!G , (33)

S44 5 ReF (
w50

2NO

~b0,1,w 2 b0,21,w!D 0w
0 ~u8!G , (34)

S42 5 ReF (
w50

2NO

~b0,1,w 1 b0,21,w!D 0w
0 ~u8!G , (35)

S12 5 ReF (
w52

2NO

~a2,1,w 1 a2,21,w!D 0w
2 ~u8!G , (36)

S24 5 ReF (
w52

2NO

~a2,1,w 2 a2,21,w!D 0w
2 ~u8!G , (37)

S34 5 2ImF (
w52

2NO

~b2,1,w 2 b2,21,w!D 0w
2 ~u8!G , (38)

S31 5 2ImF (
w52

2NO

~b2,1,w 1 b2,21,w!D 0w
2 ~u8!G , (39)

S13 5 2 ImF (
w52

2NO

a2,0,wD 0w
2 ~u8!G , (40)

S41 5 2 ReF (
w52

2NO

b2,0,wD 0w
2 ~u8!G , (41)

S22 5 ReH (
w52

2NO

@c20wD 2w
2 ~u8! 1 c220wD 22w

2 ~u8!#J ,
(42)

S23 5 ImH (
w52

2NO

@c20wD 2w
2 ~u8! 1 c220wD 22w

2 ~u8!#J ,
(43)

S33 5 ReH (
w52

2NO

@c20wD 2w
2 ~u8! 2 c220wD 22w

2 ~u8!#J ,
(44)

S32 5 2ImH (
w52

2NO

@c20wD 2w
2 ~u8! 2 c220wD 22w

2 ~u8!#J .
(45)

The a, b, and c expansion coefficients appearing in the
above equations are obtained from
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a0,k,w 5 (
n,p,n8

f1n8Ĉ1n,21n8
w Fknp kn8p8

w , (46)

b0,k,w 5 (
n,p,n8

f1n8Ĉ1n,21n8
w Fknp kn832p8

w , (47)

a2,k,w 5 (
n,p,n8

~21 !p8Ĉ1n,1n8
w Fknp kn8p8

w , (48)

b2,k,w 5 (
n,p,n8

~21 !32p8Ĉ1n,1n8
w Fknp kn832p8

w , (49)

a2,0,w 5 (
n,p,n8

f1n8Ĉ1n,21n8
w F1np21n8p8

w , (50)

b2,0,w 5 (
n,p,n8

f1n8Ĉ1n,21n8
w F1np21n832p8

w , (51)

c2,0,w 5 f2w (
n,p,n8,p8

~21 !p8Ĉ1n,1n8
w F1np21n8p8

w , (52)

c22,0,w 5 (
n,p,n8,p8

~21 !p1n1n8 1 wĈ1n,1n8
w F1np21n8p8

w ,

(53)

where the F matrix is given by

Fknp k8n8p8
w

5 2(
u

~21 !ufu1k8n8

3 Ĉu1kn,2u2k8n8
w Dknp k8n8p8

u . (54)

The mode index p8 in Eqs. (46–51) takes on values that
depend on n, n8, and w. Specifically, if n 1 n8 1 w is
even, then p8 5 p; otherwise p8 5 3 2 p. The range on
w in the above equations is also dependent on n and n8,
with un 2 n8u < w < n 1 n8. As above, the indices k
and k8 in the above equations take on only the values of
21 and 1.
The first two terms in Eq. (32) have a well-recognized

physical significance. Specifically, the random-orien-
tation total cross section of the cluster will be given by

^Csca& 5
2p

k2
Re~a0,1,0 1 a0,21,0!. (55)

Likewise, the second term in Eq. (32) corresponds to the
asymmetry factor

^Csca cos u 8& 5
2p

3k2
Re~a0,1,1 1 a0,21,1!. (56)

Finally, the orientation-averaged extinction cross section
can be obtained from

^Cext& 5
2p

k2
ReS (

n,m,p
Tmnp mnpD . (57)

Frequently, these three properties are of sole importance
in radiative transfer applications. In such cases the
given formulation for the orientation-averaged scattering
properties can be optimized. First, the orientation-
averaged scattering cross section can be obtained directly
from the T matrix through

^Csca& 5
2p

k2 (
n,m,p

(
k,l,q

n~n 1 1 !~2l 1 1 !fmn

l~l 1 1 !~2n 1 1 !fkl
uTmnp klqu2.

(58)

Second, note from Eq. (54) that Fknp kn8p8
1 would have un

2 n8u 5 1; i.e., the C ’s for w 5 1 would be zero for other
combinations of n and n8. Taking this over to Eq. (27), it
is seen that the index n8 can be constrained to limits of
n8 5 n 6 1 if only a0,k,1 is required.

D. Numerical Aspects
The formal procedure for calculating the cluster T matrix
would first require the inversion of the system of equa-
tions in Eq. (3) to produce the sphere-centered Tij matrix,
followed by the contraction of the Tij into the cluster T
matrix through Eq. (5). The random-orientation scatter-
ing matrix can then be obtained from calculation of the A,
B, and D matrices in Eqs. (27)–(29) and the scattering
matrix expansion coefficients in Eqs. (46)–(54).
The first two steps can easily become the most chal-

lenging numerical task of the calculations. Considering
order, degree, and mode, the number of unknown scatter-
ing coefficients for each individual sphere, denoted Mi ,
will be Mi 5 2NO,i(NO,i 1 2), where NO,i is the maxi-
mum order retained in the individual sphere scattered-
field expansions. Typically, NO,i will be proportional to
the size parameter xi of the individual spheres. For ex-
ample, a system of five spheres, each having a size param-
eter of 6 (and with the use of NO,i 5 8), will require (at
most) inversion of an 800 3 800 complex-valued matrix.
On the other hand, the maximum order of the cluster T
matrix, denoted NO , will be proportional to the size pa-
rameter of the smallest sphere that circumscribes the en-
tire cluster. Referring to Eq. (5), this implies that the J0i

and Jj0 matrices are not square—J0i has Mi columns
and M 5 2NO(NO 1 2) rows, and vice-versa for Jj0.
Putting it all together, calculation of the Tij matrix will
involve of the order of (NSMi)

3 operations, followed by
(NSMi)

2M 1 NSMiM
2 operations to contract the Tij ma-

trix into T.
This task can be considerably simplified if the cluster

takes the configuration of a linear chain of spheres
aligned along a common z axis, which results in a decou-
pling of the azimuthal degrees of the harmonics.19

Borghese et al. have discussed the application of group
theory techniques to reduce the size of Eq. (3) for clusters
that possess more complicated symmetries.20 Such
methods, however, are not easily implemented, nor would
they work for random, nonsymmetric clusters.
In the end, however, it is only the cluster-centered T

matrix, and not the sphere-centered Tij matrix, that is
needed to calculate analytically the orientation-averaged
scattering matrix. Because of this, a considerable
amount of computer memory (and often time) can be
saved by linking steps 1 and 2. To illustrate this process,
we first note that the formal inversion of Eq. (3) can be
described by the matrix equation
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ā3H31

A
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where ā is a diagonal matrix representing the Lorenz/Mie
coefficients and H is a matrix of the Hankel-function ad-
dition coefficients. The above system is now contracted
by the operation
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ā1H13
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•••
•••
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0
ā3I
A

•••
•••
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G S J10

J20

J30

A
D ,

(60)

where J is the matrix of Bessel-function addition coeffi-
cients as defined in Eq. (5). By defining

T i 5 (
j 5 1

NS

T ijJ j0, (61)

we obtain

F I
ā2H21

ā3H31

A

ā1H12

I
ā3H32

A

ā1H13

ā2H23

I
A

•••
•••
•••
�

G S T1

T2

T3

A
D 5 S ā1J10

ā2J20

ā3J30

A
D .

(62)

Returning to the tensorial form of notation, the system in
Eq. (62) can be written as

Tmnp klq
i 5 ānp

i Jmnp klq
i0 2 ānp

i Hmnp m8n8p8
ij Tm8n8p8 klq

j .
(63)

As above, summation over all indices not appearing on
the left-hand side is implied, and it is also noted that
Hmnp klq

ij [ 0 and Jmnp klq
ij 5 dnldmkdpq for i 5 j. Upon

solution of the above system for the Ti matrices the
cluster-centered T matrix is obtained from the second
contraction:

Tmnp klq 5 Jmnp m8n8p8
0i Tm8n8p8 klq

i . (64)

Our procedure for calculating the T matrix of the clus-
ter is as follows. For successive values of the column in-
dices l, k, and q we solve Eq. (63) for the column vectors
of Ti by using an iteration method. Next, the column
vectors of Ti are multiplied into J0i, and the resulting
vector is added to the T matrix as described in Eq. (64).
It is therefore not necessary in this process to store in
memory the complete Ti matrices; rather, the columns of
Ti are calculated sequentially and then discarded once
their contribution to the T matrix has been determined.
In addition, the matrix multiplication in Eq. (64) is car-
ried out only for row orders n up to and including the cur-
rent value of the column order l. Values of the T matrix
for n . l are obtained from the symmetry relation

Tmnp klq 5 ~21 !m1k
l~l 1 1 !~2n 1 1 !

n~n 1 1 !~2l 1 1 !
T2klq 2mnp .

(65)

In implementing the method, we must establish two
separate truncation limits on harmonic order for each
sphere. The maximum value of the row order n in
T mnp klq

i , denoted as NO,i , can usually be fixed a priori
from the number of Lorenz/Mie terms required to repre-
sent the single-sphere properties of sphere i. It should
be noted, however, that for certain cases the required
value of NO,i for contacting spheres can significantly ex-
ceed that required for isolated spheres, especially when
xi ! 1 and the real and imaginary parts of the refractive
index are large.11,21 The truncation limit on the column
order l in T mnp klq

i , again for sphere i, can be determined
from the convergence of the orientation-averaged extinc-
tion efficiency of sphere i. This quantity, which is given
by11

^Qext,i& 5
2

xi
2 ReS (

n,m,p
(
l,k,q

Jklq mnp
0i Tmnp klq

i D , (66)

can be easily calculated during the course of performing
Eq. (64). The maximum value of l is fixed when the rela-
tive contribution to Eq. (66) for successive values of l de-
creases below a given tolerance.
It should be emphasized that each Ti matrix does not

need to be calculated to a column order l equal to the
maximum order NO of the cluster T matrix—it only needs
to be calculated out to a value of l that results in an ac-
ceptable convergence of Eq. (66). Once the Ti matrix
converges, it can be removed from the equations, and be-
cause of this the number of equations to be solved in Eq.
(63) will decrease as the entire T matrix approaches con-
vergence. Spheres that are closer to the cluster origin
will have their Ti matrices converge in a smaller number
of orders than the more distant spheres.
An additional property that can be obtained directly

from the procedure is the random-orientation absorption
efficiency of the individual spheres,11 which is given by

^Qabs,i& 5
2

xi
2 (
n,m,p

(
l,k,q

d̄np
i n~n 1 1 !~2l 1 1 !fmn

l~l 1 1 !~2n 1 1 !fkl

3 Tmnp klq
i Tmnp klq

i* , (67)

where d̄np is a real-valued quantity that is related to the
Lorenz/Mie coefficient of sphere i.
As mentioned above, an advantage of this scheme is

that it obviates the full storage in memory of the Tij ma-
trix, which is unavoidable when direct methods (i.e.,
Gaussian elimination) are used to solve Eq. (59). In ad-
dition, the method allows one to exploit directly the fac-
torization of the H and J matrices into rotational and
axial translation parts, i.e.,3
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H ij 5 Hmnp klq~rij , u ij ,f ij!

5 ~21 !m exp@i~k 2 m !f ij#(
m8

~21 !m8

3 D mn
m8~u ij!Hm8np m8lq~rij , 0, 0!D m8

k
~u ij!,

(68)

where rij , uij , and fij denote the polar coordinates that
describe the origin of i relative to j. An identical expan-
sion can be obtained for the J0i matrix. The number of
operations required to perform a multiplication of H ij

with a vector will be of the order of N O,i
3 for the factored

matrix, as opposed to N O,i
4 for the unfactored matrix.

Memory requirements for storage of the factored matrices
are also reduced in a proportional manner.
Nevertheless, the most critical factor in the execution

time is the number of iterations required to solve Eq. (63)
for a given right-hand-side vector. An a priori estimate
of the minimum number of iterations is not obvious—
suffice it to say that the proximity of the spheres to each
other, and the resonant behavior of the spheres, can
strongly influence the convergence rate.7,22 Empirically,
however, we have found that the conjugate gradient
method provides the most rapid convergence to the solu-
tion, which is consistent with findings for the discrete-
dipole representation of particle scattering.23

Calculation of the A, B, and D matrices in Eqs. (27)–
(29) involves a numerical effort that can become compa-
rable with that required in calculation of the T matrix.
Considering that the indices w, v, and u run from 0 to
2NO , 2w to w, and 2NO 2 1 to NO 1 1, respectively, cal-
culation of A, B, and D each involves of the order of
NO

5 operations (not including calculation of the Ĉ ’s). In
addition, complete storage of the A and B matrices will
require of the order of 8NO

4 locations, which is greater
than that required for the T matrix itself. In practice, we
do not store the A and B matrices for all values of w and
v prior to calculating the D matrix from Eq. (27).
Rather, the operations in Eqs. (27)–(29) are performed se-
quentially within a common, nested loop over v and w.
For the special case of axially symmetric sphere
configurations—for which Tmnp klq is nonzero only for m
5 k—the A and B matrices in Eqs. (28) and (29) will be
zero for all v except v 5 0.

3. RESULTS AND DISCUSSION
A. Numerical Performance
The veracity of the formulation and the code under which
it is implemented were proven by several tests. Total
cross sections and scattering matrix values for fixed ori-
entation were calculated from the generated T matrix
and were found to be in perfect agreement with results
obtained from direct iterative solution of Eq. (3).
Random-orientation cross sections and scattering matrix
elements for linear chains were found to be independent
of the configuration of the chain in the cluster frame (i.e.,
aligned along the x, y, or z axes) and were identical to our
previously published values.10 Orientation-averaged
scattering matrix elements were shown to obey the rela-
tions S22(0) 5 S33(0), S22(p) 5 2S33(p), and S11(p)
2 2S22(p) 5 S44(p).
24 In addition, the random-

orientation matrix elements for clusters possessing a
plane of symmetry (not necessarily axisymmetric chains)
were nonzero only for S11 , S22 , S33 , and S44 and for S12
and S34 and their transposes.
We found that scheme presented in Eqs. (63) and (64)

can shorten considerably the execution time required to
calculate the T matrix and the random-orientation prop-
erties of a cluster. To provide a relative indication, we
note that calculation of the T matrix for a close-packed
cluster of 11 spheres, each sphere having a size param-
eter of 4 (with NO,i 5 7) and a refractive index of 1.5
1 0.005i required 38 min of CPU time on a SUN SPARC
20 workstation. For this case the maximum order of the
T matrix was NO 5 21. Calculation of the orientation-
averaged scattering matrix expansion coefficients re-
quired an additional 8 min. In comparison, direct calcu-
lation of the Tij matrix required 38 min, followed by 31
min to contract Tij into T. As another measure, we cal-
culated the T matrix of a fractal-like cluster of 250
spheres (i.e., a soot aggregate) with sphere properties of
x 5 0.3 and m 5 1.6 1 0.6i.21 One harmonic order (in-
cluding both the electric and magnetic dipole terms) were
used in the sphere expansions, and the T matrix was
truncated at NO 5 13 orders. Calculation of the T ma-
trix by means of the present method required 28 min, fol-
lowed by 1 min to calculate the random-orientation scat-
tering matrix coefficients. Direct calculation of the Tij

matrix, on the other hand, required 160 min. These two
examples bear out our general conclusion that the present
method offers the greatest improvement over the direct
method when the size of the T matrix is significantly less
than the size of the Tij matrix (i.e., M ! NSMi).
As a further point of comparison, calculation of the

orientation-averaged matrix elements by numerical
quadrature of the fixed-orientation values typically re-
quired overnight runs for the clusters described above.
We consistently found that ;4-digit accuracy in the ma-
trix elements was obtained when the total number of
quadrature points—and the total number of right-hand
sides to be solved by iteration—was always well in excess
of the number of right-hand sides in Eq. (63). In view of
this, the scheme developed here can be viewed as the op-
timum iterative method to finding the orientation-
averaged properties of the cluster.
The basic formulation and approach developed here

would also have direct application to the discrete-dipole
model of scattering from nonspherical particles,8,23 which
can be obtained from the general, multipole formulation
in the limit of small sphere size parameter. Indeed, the
T-matrix formulation presented here, and the associated
methods for calculating the random-orientation scatter-
ing matrix elements, can be viewed as a multipole gener-
alization of the dipole-based formulations developed by
Singham et al.25 and McClain and Ghoul.26 The advan-
tage of our method is that it would provide an efficient
means of calculating the T matrix of the particle from the
discrete-dipole procedure—in that it would obviate the di-
rect numerical inversion of the coefficient matrix. Judg-
ing from our calculations on finite-sized clusters of
spheres, we would expect that this approach provides a
significantly faster method of obtaining the random-
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orientation properties of the discretized particle than the
traditional method of numerical quadrature.
There certainly is ample potential for further optimiza-

tion of the mathematical formulations and the numerical
procedures. For example, exploitation of symmetry prop-
erties of the cluster (beyond the obvious axisymmetric
configuration) could significantly reduce the computa-
tional times.20 Optimized iteration strategies for solu-
tion of Eq. (63) also need to be developed. In addition,
the method can have serious drawbacks for disperse clus-
ters of widely separated spheres. As has been noted in
previous work,11,27 such systems do not lend themselves
well to a single, cluster-centered T-matrix description,
simply because the number of T-matrix orders that are
required to expand the partial fields about a common ori-
gin can become excessive. For these systems it would be
advantageous to retain a multiple-origin representation
of the scattering from the cluster (i.e., the Tij matrix),
which would require a completely different formulation of
the orientation-averaged scattering matrix elements and
expansion coefficients.

B. Calculation Results
We will present a comprehensive examination of the scat-
tering properties of sphere clusters in a forthcoming pa-
per. For the present purposes we wish to present a small
sample of results and point out some salient features of
scattering from clusters. In Figs. 1 and 2 we plot the
scattering matrix elements, as a function of scattering
angle u 8, for two distinctly different types of clusters. In
Fig. 1 the cluster is a straight chain, whereas in Fig. 2 the
spheres are packed into a hexagonal lattice. These two
configurations represent extrema in packing density of
the spheres. In both plots the number of spheres in the
cluster, NS , ranges from 1 to 5, and the size parameter
and the refractive index of the individual spheres are 5
Fig. 1. Orientation-averaged scattering matrix elements for a linear chain of spheres.
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Fig. 2. Orientation-averaged scattering matrix elements for a packed cluster of spheres.
and 1.5 1 0.005i, respectively. The matrix element S11

has been normalized with 4/xV
2, where xV is the volume-

mean size parameter, and the other elements have been
normalized with S11 .
A quick glance at both figures reveals that the configu-

ration of the spheres can have a significant effect on the
scattering properties of the cluster. Aside from the in-
crease in the forward-direction value of S11 , the matrix
elements for the chain (Fig. 1) attain a form that is nearly
independent of NS for NS > 2. Clustering results in a
damping of the oscillations in the matrix elements com-
pared with those in the single sphere, yet the locations of
extrema in the oscillations for the chain are nearly iden-
tical to those for the single sphere—with the exception, of
course, of S22 /S11 , which is identically unity for the
sphere. On the other hand, the matrix elements for the
packed cluster are significantly altered by increasing NS
and appear to approach a saturation level in which all os-
cillations are damped out. The effect of clustering for
this configuration is especially noticeable in the
backward-direction values of S22 , S33 , and S44 .

Fig. 3. (a) Asymmetric and (b) symmetric tetrahedral-lattice
clusters of eight spheres.
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Fig. 4. Orientation-averaged scattering matrix elements for the symmetric and asymmetric clusters.
Fig. 5. Variation in fixed-orientation matrix elements for the eight-sphere symmetric cluster. The dotted area represents 1 standard
deviation.
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To explain the differences in scattering between these
two configurations, we first note that clustering will affect
scattering by the two mechanisms of far-field wave inter-
ference and near-field interactions (or, equivalently, mul-
tiple scattering). When the size parameters of the
spheres are of the order of unity or greater (as is the case
here), orientation averaging acts to zero out the effects of
interference in all but the forwardmost scattering direc-
tions. The differences between the single-sphere and
orientation-averaged multiple-sphere scattering patterns
are therefore an effect primarily of multiple scattering.
Multiple scattering for the chain configuration occurs pri-
marily between neighboring spheres on the chain, and be-
cause of this the matrix elements do not change apprecia-
bly as NS increases—except for the effect of interference
on S11(u8 ; 0). On the other hand, the packed-cluster
configuration offers a much higher opportunity for mul-
tiple scattering among the spheres—and therefore results
in a greater difference in the random-orientation ele-
ments relative to the single-sphere values.
The configurations used in Figs. 1 and 2 all possess a

plane of symmetry, and because of this the elements S23 ,
S24 , S13 , and S14 and their transposes were zero. To ex-
amine the magnitude of these terms for nonsymmetric
clusters—and also to test the veracity of the code—we
performed calculations on two configurations of eight
spheres. The configurations represent two isomers of a
hexagonal lattice and are shown in Fig. 3. Note that the
only difference between the two configurations is the
placement of one sphere, with the cluster in (a) forming
an asymmetric configuration and the cluster in (b) being
symmetric. Orientation-averaged scattering matrix re-
sults for the two configurations are presented in Fig. 4,
where we show the S11 , S21 , S22 , S32 , and S42 elements.
The sphere refractive index is the same as that above,
and the sphere size parameter is 4. The major elements
S11 , S21 , and S22 are nearly identical for the two configu-
rations, which is expected, since the configurations are
nearly identical. The asymmetric cluster, however, has
small (;1023S11) yet distinctly nonzero values of S32 and
S42 .
To give an indication of the variation in matrix ele-

ments over cluster orientation, we calculated matrix ele-
ments for the eight-sphere, symmetric cluster for a large
number of fixed, randomly chosen orientations. The re-
sults of these calculations are given in Fig. 5. The dotted
area in the plots represents a 1-standard-deviation
spread in the calculated matrix elements for 1000 random
orientations, and the solid curve in the center of the dot-
ted area represents the exact, orientation-averaged re-
sults. We have also presented, for S32 , the mean of the
fixed-orientation values. The relatively large spread in
the results indicates that the matrix elements can be
highly sensitive to orientation, which was observed for bi-
spheres in Ref. 10. This behavior has bearing on the va-
lidity of a random-orientation model for scattering by
clusters. It would be expected that actual particles sus-
pended in gases or liquids attain a somewhat biased ori-
entation because of differences in the gravitational and
hydrodynamic centers of the particles. Experimentally
measured matrix elements of such particles could be sig-
nificantly different from those predicted from a random-
orientation assumption, especially for the higher-order el-
ements such as S32 .

APPENDIX A: ADDITION COEFFICIENTS,
ROTATION FUNCTIONS, AND
VECTOR COUPLING COEFFICIENTS
Relations for calculation of the addition coefficients are
presented in Refs. 3 and 21. The first reference contains
errors in the axial-translation formulas. Corrected formu-
las are given here. The vector addition coefficients for
axial translation over a positive distance zij can be ob-
tained from the scalar addition coefficients C mn ml

ij :

H mnp mlp
ij 5 zijF n 1 m 1 1

~n 1 1 !~2n 1 3 !
Cmn11 ml
ij

1
n 2 m

n~2n 2 1 !
Cmn21 ml
ij G 1 Cmn ml

ij , (A1)

H mnp ml32p
ij 5 zij

im
n~n 1 1 !

Cmn ml
ij . (A2)

The scalar coefficient (again for positive axial translation)
can be obtained by recurrence relations3,21 or by the direct
formula

Cmn ml
ij 5 ~21 !min2l~2n 1 1 !

3 (
w

iwa~m, l; 2m, n; w !hw~rij!, (A3)

where hw is the spherical Hankel function and a(m, l;
2m, n; p) are Gaunt coefficients, which are defined by
the linearization

Pl
m~cos u!Pn

2m~cos u!

5 (
w

a~m, l; 2m, n; w !Pw~cos u!, (A4)

where w takes on the values of w 5 un 2 lu, un 2 lu
1 2, . . ., n 1 l. Recognizing that P n

m5D 0n
m and using

Eq. (21), we see that the Gaunt coefficients are equivalent
to

a~m, l; 2m, n; w ! 5 ~21 !n1l1wĈml,2mn
w Ĉ0l,0n

w . (A5)

The formulas for the Jij coefficients are identical to Eqs.
(A1) and (A2), except that the Cij coefficients are now
based on the spherical Bessel function in Eq. (A3). For the
case of a negative axial translation Eqs. (A1) and (A2)
would be multiplied by (21) n1l and (21) n1l11, respec-
tively.
The rotation coefficients D lm

m are related to the gener-
alized spherical functions14,18 d km

(n) by

D kn
m 5 ~21 !m1kF ~n 2 k !!~n 1 m !!

~n 1 k !!~n 2 m !!G
1/2

dkm
~n ! . (A6)

A recurrence relation for calculating the functions up-
ward in m is

D kn
0 ~b! 5 Pn

2k~cos b!, (A7)
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D kn
m11 5 cos2~b/2!D k21 n

m 2 ~n 2 k !~n 1 k 1 1 !

3 sin2~b/2!D k11 n
m 2 k~sin b!D kn

m . (A8)

Values for negative m are obtained from
Dkn

2m 5 (21)m1kf2mnf2knD2kn
m and D2kn

2m 5 D mn
k .

The Ĉ coefficients appearing in this work are related to
the vector coupling coefficients14,18 by

Ĉmn,kl
w 5 S fmn fkl

fm1k w
D 1/2Cmn,kl

m1k w .

The Ĉ coefficients can be calculated by a relatively simple
procedure. First define the auxiliary coefficient S by

Ĉmn,kl
w 5 gnlw~n 1 m !!~l 1 k !!~w 2 m 2 k !!Smn,kl

w ,
(A9)

where

gnlw

5 F ~2w 1 1 !~n 1 l 2 w !!~w 1 n 2 l !!~w 1 l 2 n !!
~n 1 l 1 w 1 1 !! G1/2.

(A10)

The S coefficients, in turn, obey the three-term downward
recurrence relation

Smn,kl
w21 5 bwSmn,kl

w 1 cwSmn,kl
w11 , (A11)

with starting values of
bw 5
~2w 1 1 !$~m 2 k !w~w 1 1 ! 2 ~m 1 k !@n~n 1 1 ! 2 l~l 1 1 !#%

~w 1 1 !~n 1 l 2 w 1 1 !~n 1 l 1 w 1 1 !
, (A12)

cw 5
w~w 1 n 2 l 1 1 !~w 1 l 2 n 1 1 !~w 1 m 1 k 1 1 !~w 2 m 2 k 1 1 !

~w 1 1 !~n 1 l 2 w 1 1 !~n 1 l 1 w 1 1 !
, (A13)
Smn,kl
n1l11 5 0,

Smn,kl
n1l 5

1
~n 2 m !!~l 1 k !!~n 1 m !!~l 2 k !!

. (A14)

The minimum value of w will be the larger of un 2 lu and
um 1 ku. Recurrence formulas for S in the n and l indices
can be obtained from the formulas

Smn,kl
w 5 ~21 !w1n1kSm1kw,2kl

n

5 ~21 !w1n1kSkl,2m2k w
n

5 ~21 !n1mSmn,2m2k w
l

5 ~21 !n1mSm1k w,2mn
l . (A15)
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